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The level of heavy metals varies in different species 
of edible prawns, and high accumulation of all metals 
was observed in Metapenaeus dobsoni. Various risk 
assessment indices show that Cd and Pb pose signifi-
cant ecological and human health risks in the Cochin 
estuary.
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Introduction

The contamination of aquatic ecosystems by heavy 
metals is a serious concern worldwide, including in 
the polar regions, because of their persistency and 
eco-toxicological effects (Chu et  al.,  2019; Vardhan 
et  al., 2019). Heavy metals, which reach the aquatic 
ecosystems and settle in the sediment, accumulate in 
microorganisms, aquatic flora and fauna and finally 
reach human beings, causing serious health effects 
(Zhao et  al.,  2012; Cuong & Obbard,  2006). The 
insoluble and particulate metals reach the aquatic 
environment from various sources, such as atmos-
pheric fallout, urban surface run-off, domestic waste 
dumps and other anthropogenic sources like indus-
trial effluents, municipal sewage and solid waste (Bai 
et al., 2016; Kumar et al., 2019; Hader et al., 2020).

Estuaries, being an ecotone between the sea and 
freshwater, perform several important ecological 
functions, including biodiversity conservation. They 
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regulate the water regime, act as natural filters for 
contaminants and play an important role in the bio-
geochemical dynamics of nutrients, primary produc-
tivity and bacterial processes (Sobolewski, 1999). 
Sediments of estuarine systems act as the sink for 
heavy metal discharged into the ecosystem as well as a 
source to aquatic biota by mobilising it with respect to 
environmental conditions (Enya et  al.,  2019; Kurilov 
et al., 2009; Ghrefat et al., 2012). Thus, analysing the 
sediment-bound heavy metals is an unavoidable part 
of risk assessment of heavy metal contamination. The 
toxicity and bioavailability of heavy metals in sedi-
ments depend on the chemical association of different 
components of the ecosystem, such as organic matter, 
oxides of ferric and manganese, carbonates, and sili-
cates, among others. (Alonso Castillo et al., 2011; Bai 
et al., 2019; Nakazato et al., 2006; Yuan et al., 2009). 
Mobilisation through solubility, oxidation and reduc-
tion processes in response to the prevailing environ-
mental conditions help to evaluate the ecological or 
human health risks due to the contamination (Nael 
et  al.,  2009; Nemati et  al.,  2011). This approach is 
helpful for assessing the transport of metals into the 
sea from the estuarine system.

The quantitative estimation of metals in different 
tissues of aquatic organisms indicates the distribu-
tion pattern and retention potential of metals within 
the organism (Murugan et al., 2008). Benthic organ-
isms occupy a key position within the metal bio-
geochemical cycles, which are closely linked to the 
structural and functional properties and the micro-
habitats (Ferraro et  al.,  2009; Reynoldson, 1987). 
Thus, benthic organisms are the most convenient 
species for biomonitoring and developing human 
health risk assessment indices (Amirah et al., 2013; 
Jiang et  al.,  2014; Passos et  al.,  2008). The direct 
and indirect relation between biotic communities 
and human impact on estuaries reinforces the choice 
of such communities as biological indicators.

The geochemistry of heavy metals in the estu-
ary indicates that the contamination began during 
the 1940s after the industrialisation of the region 
and peaked during the 1990s (Shylesh Chandran 
et  al.,  2019). A number of studies have highlighted 
the heavy metal contamination in the Cochin estu-
ary (George et  al.,  2016; Kumar et  al.,  2011; Salas 
et  al.,  2017; Sheeba et  al.,  2017, 2020). The com-
plex nature and flow restrictions in the lake favoured 
the accumulation of pollutants in the sediments 

(Balachandran et al., 2005). Only a few attempts were 
made so far to study the biogeochemical dynamics 
of heavy metals in the estuary (Mohan et  al., 2014; 
Sruthi et  al.,  2018; Shylesh Chandran et  al.,  2019), 
especially accumulation and transportation through 
biota. Even though heavy metal pollution was 
reported from various species of fishes (Mohan 
et  al.,  2012; Nair et  al.,  2006), its impact on other 
important biota, especially edible prawns, remains 
absent.

The Cochin estuary is one of the major prawn 
production/harvesting as well as exporting centres 
in India. Edible prawns are highly preferred by the 
local community due to its high nutritional value 
and affordable price (Ginson & Bindu, 2017). Since 
prawn harvesting is high in the contaminated estua-
rine region, proper risk assessment is necessary for 
the sustainable utilisation of these resources. Hence, 
it is crucial to study the metal fractions and bioavail-
ability in this productive ecosystem. The major objec-
tives of this study are to estimate the ecological risk 
associated with the various fractions of heavy metals 
in the estuarine environment, as well as to understand 
the metal bioaccumulation in benthic organisms, 
which plays a key role in the biogeochemistry of met-
als in the estuary.

Materials and methods

Study area

The Cochin estuary (Fig.  1) (9° 40′–10° 12′ N and 
76° 10′–76° 30′ E), a tropical positive estuarine sys-
tem through which six rivers in Kerala joins with 
Arabian Sea, supports the livelihood for thousands 
of people through its vast natural resources (Menon 
et  al.,  2000). The Cochin industrial area, the largest 
industrial belt in the Indian state of Kerala (Ramzi 
et al., 2017), discharges nearly 0.104 M  m3 untreated/
partially treated effluents, which is the major source 
of heavy metals in the estuary.

Sample collection and preparation

The sediment samples were collected from five loca-
tions of the Cochin estuary using a grab sampler. The 
first sampling site (S1) was close to the regulator-
cum-bridge near the industrial area, and the other 
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sites (S2, S3, S4 and S5) were located towards down-
stream at 1–2 km apart. The samples were brought to 
the laboratory, air dried, powdered, sieved through 63 
µ sieve and preserved for the metal analysis. Four spe-
cies of prawns, Metapenaeus dobsoni, Metapenaeus 
monoceros, Penaeus indicus and Macrobrachium 
rosenbergii were collected with the help of fishermen 
using cast net or Chinese dip net from the estuary. 
The samples were immediately put in ice, transported 
to laboratory and frozen until analysis. Muscle tissues 
were separated, washed in deionised water and oven 
dried at 40 °C until constant weight.

For determining the total metal content, 0.25-g 
sediment sample was digested in a microwave-assisted 
digester (MARS X-Press, CEM) using a mixture of 
Suprapur  HNO3 (65%) and HCl (37%) (3:1) (USEPA, 
2007). After digestion, the samples were filtered and 
made up to suitable volume with ultrapure water. The 
biological samples were digested with  HNO3–HClO4 
using the microwave-assisted digester and diluted to 
the desired volume with ultrapure water.

Fractionation of metals

The BCR procedure (Table  1) was used for the 
fractionation of the selected metals (Zn, Cd, Pb 
and Cu) (Arain et  al.,  2009; Fedotov et  al.,  2012; 
Golia et  al.,  2007; Rauret et  al.,  2000; Sutherland 
& Tack, 2003; Wang et al., 2002). One gram of the 
dried sediment sample was used for the extraction, 
to which the corresponding reagent or reagents 
were added and all the extractions were carried out 
at room temperature, where the samples along with 
reagents were mixed continuously for 16 h using a 
mechanical shaker. The extract was separated by 
centrifugation for 20  min, at 3000  rpm, and the 
resultant supernatant liquid was transferred into 
polyethylene bottles. The residue was washed by 
adding 20  mL of deionised water after each step, 
and shaken for 15 min to be centrifuged for 20 min 
at 3000 rpm. The supernatant was decanted, and the 
residue was subjected to further extraction in the 
subsequent step. The residual fraction was estimated 

Fig. 1  Map showing the study area and sampling locations
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by acid digestion of the residue of the samples using 
a microwave-assisted digester and made up to the 
desired volume with deionised water.

Estimation of heavy metals

Anodic stripping voltammetric method, using hanging 
mercury drop electrode of voltammetric trace metal 
analyser (797 VA Computrace, Metrohm, Switzerland) 
was used for the detection of total metal and fractions. 
The silver–silver chloride electrode in 3  M KCl was 
used as reference and platinum electrode as auxiliary 
(Bott, 1995; Locatelli et al., 1999).

Risk assessment

Various risk assessment indices were applied to 
estimate the extent of ecological and human health 
risks of heavy metal contamination in the Cochin 
estuary. The bioavailable fraction of metals was 
determined by summing up the first three fractions 
(F1 + F2 + F3) (Morales-Hern et  al.,  2004). A RAC 
was applied  (Supplementary Table  1) for the frac-
tions (Aydin & Kucuksezgin, 2012). Statistical tests, 
including the correlation between different fractions 
of heavy metals and fractional distribution as well as 
metal content in benthic organisms, were conducted 
with SPSS software.

Quality assurance

All the samples, chemical solutions and standards 
were prepared using ultrapure water. Working stand-
ards were prepared from 1000  ppm standard stock 

solution of metals (Merck, Germany). The acids 
used were of Suprapur quality. In order to check the 
validity of measurements, certified reference mate-
rial PACS-3 was used, where Zn, Cd, Pb and Cu 
showed > 98% recovery for the same.

Results and discussions

Heavy metals in sediment

The total heavy metal content of the sediment sam-
ples was estimated directly by (1) acid digestion 
as well as (2) the sum of the different fractions, as 
shown in  (Supplementary Table  2). Zn was found 
in the highest level ranging from 739.92 (S4) to 
1509.71 (S3) (µg/g) with an average of 1082.11(µg/g) 
in the study area. Cd was found the highest in S3 
(33.66 µg/g) and the lowest in S5 (15.44 µg/g) with 
an average of 21.36  µg/g. The distribution of Pb 
showed more variation among sites, ranging from 
14.57 to 54.44 µg/g with an average of 27.93 µg/g. Cu 
was ranged between 49.45 (S2) and 76.24 (S4) with 
an average of 59.4  µg/g in the Cochin estuary. The 
comparison of the total metal with the sum of frac-
tions showed that the difference was minimal, indicat-
ing the accuracy of the analytical estimation. Earlier 
studies have reported that a variation of ± 15% was 
acceptable for the fractionation analysis using the 
BCR method (Sutherland & Tack, 2002).

The average values of the total metal content obtained 
using both methods in this study were compared with the 
metal content reported previously from the same loca-
tions and other major wetlands of India (Table 2). It was 

Table 1  Sequential extraction procedure for fractionation of metals in sediments

Soil fraction Extraction procedure

Step 1 F1—exchangeable and 
water-soluble fraction

40 ml of acetic acid (0.11 M) was added and shaken overnight (16 h) at room temperature.

Step 2 F2—Fe and Mn  
hydroxide-bound 
(reducible fraction)

To the residue of step 1, 40 ml of hydroxylammonium
chloride (0.5 M, pH 1.5) was added and shaken overnight (16 h) at room temperature.

Step 3 F3—organically bound
(oxidizable fraction)

To the residue of step 2, 10 ml hydrogen peroxide (8.8 M, pH 2) was added and kept for 1 h at 
room temperature and 1 h at 85 °C, and again, 10 ml hydrogen peroxide was added and kept 
1 h at 85 °C, and then, 50 ml ammonium acetate (1 M, pH 2) was added, cooled and shaken 
overnight (16 h) at room temperature.

Step 4 F4—residual fraction To the residue of step 3, 8 ml of 3:1 HCl-HNO3 mixture was added and digested in a microwave-
assisted digester.
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observed that the heavy metal contamination of Cochin 
estuary was much higher than other wetlands systems, 
which established the study area as a chemical hot spot.

Fractional distribution of heavy metals in sediment

The natural range of Zn in the earth’s crust varies 
from 10 to 300 mg/kg. It is an essential nutrient for 

animals and plants, necessary for several metabolic 
processes. At higher concentrations, Zn accumu-
lates in the tissues of organisms and causes adverse 
effects and leads to deficiency of other metals such 
as Cu. In the present study, the fractional distribu-
tion of Zn in the sampling sites was in the order of 
F1 > F2 > F3 > F4 in site 1 and F1 > F2 < F3 > F4 in 
the other four locations. The total Zn (Fig. 2) was the 

Table 2  Heavy metals (µg/g) reported from different estuarine systems from India and Kerala

Sl. No Location Author and Year Zn Cd Pb Cu

1 Thamraparni Magesh et al. (2011) 198.6 11.13 26.16 40.19
2 Mandovi Siraswar and Nayak (2011) 74–83 59–85 146–157
3 Mahanadi Raj et al. (2013) 23.88 1.45
4 Tirumalairajan river estuary Venkataramanan et al. (2014) 23.40–56.32 1.73–6.74 13.68–28.06
5 Matla estuary Mukherjee et al. (2009) 45 13 24
6 Saptamu “ 35 9 24
7 Hugli “ 44 14 32
8 Thamraparni Jayaraju et al. (2011) 473–1200 0.42–0.92 0.3–170 62.8–115.35
9 Sunderbans Saha et al. (2001) 197.22–347.63 2.84–5.78 36.81–61.38 43.61–79.87
10 Hugli Chaterjee et al. (2006) 62.00–72.90 25.21–30.70 15.3–25.9
11 Vamleshwar (Narmada) Nirmal kumar et al. (2011) 8.1 0.73 73.6
12 Mullippallam Sundararajan and Natesan 

(2010)
64.3 43.04 38.89

13 Veli “ 313 1346 125
14 Kottuli wetland Harikumar and Jisha (2010) 384.25 0.02 6.9 76.76
15 Cochin estuary Salas et al. (2017) 386.08 ± 636.85 5.07 ± 9.02 21.91 ± 15.54 26.74 ± 26.44
16 Zuary estuary, Goa (Gaonkar & Matta, 2019) 47.83–166.41 0.08–90.82 35.80–90.5835
17 Valanthakkad Regions of 

Vembanad Lkae
(Joseph et al., 2019) 20.1 ± 5.04 4.1 ± 3.7 5.4 ± 0.9

18 Vellar estuary, India (Venkatramanan et al., 2018) 102.7 7.9 47.6
19 Coleroon estuary, India (Venkatramanan et al., 2018) 47.6 9.2 23
20 Tirumalairajan estuary, India (Venkatramanan et al., 2018) 36 3.7 23.5
21 Cochin estuary Present study 1062.496 26.684 37.33 63.82

Fig. 2  Percentage  
distribution of Zn fractions 
in the sediments of Cochin 
estuary
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highest in location S3 (1760.55 µg/g) and the least in 
S5 (702.0516  µg/g). It was observed that more than 
85% of the Zn present in the sediment samples is 
bioavailable with maximum of 93% at location S3. 
The exchangeable and water-soluble fraction varied 
between 36 and 47% in all the locations indicating 
high mobility of Zn in the study area. The oxidisable 
fraction ranging between 20 and 27% was the second 
highest fraction in S2, S3, S4 and S5 locations, fol-
lowed by reducible fraction.

Cadmium is one of the metals strongly absorbed 
by living cells, especially by vegetation. Its toxicity 
in the environment and human beings was widely 
studied. Cd was found to be highly bioavailable to 
organisms since more than 96% was in the bioavail-
able fraction in all the sampling locations (Fig. 3). Cd 
distribution was in the order of F1 > F2 < F3 > F4 in 
all the five locations. The exchangeable and acid solu-
ble fraction (F1) was found to be highest in S1, S2 
and S3, followed by the oxidisable fraction (F3) and 
reducible fraction (F2). The S4 and S5 were domi-
nated by oxidisable fraction, followed by exchange-
able and acid soluble fraction and reducible fraction. 
The residual fraction of Cd was found the lowest in 

all the locations. The variation in percentage distribu-
tion may be due to the multiple sources of cadmium 
during the river’s course. The observations based on 
the RAC shows that only Cd at the S2 comes under 
very high-risk criteria.

The bioavailability of Pb (Fig.  4) was high in all 
locations with maximum at S1 (79%) and minimum 
at S4 (64%). Pb was in the order as F1 < F2 > F3 > F4 
in locations 1, 3 and F1 < F2 > F3 < F4 in locations 2, 
4 and 5. The reducible fraction was dominating in all 
the locations, with a minimum of 35% (S3) to maxi-
mum 61% (S2) and residual fraction varied between 
22% (S1) and 35% (S4), which was the second high-
est fraction in all locations except S1. Even though 
the exchangeable and acid soluble fractions were pre-
sent at the least concentration (1–6%), the bioavail-
ability of Pb in the study area remained high due to 
the elevated concentration of reducible and oxidisable 
fractions. The residual fraction was found the high-
est in S1 and S2 (43 and 39%), followed by oxidis-
able fraction (39 and 38%) and reducible fraction (20 
and 18%). The oxidisable fraction was dominant in 
S3 and S4 (51 and 43%). The oxidisable and reduc-
ible fractions were found equally distributed and the 

Fig. 3  Percentage  
distribution of Cd fractions 
in the sediments of Cochin 
estuary
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Fig. 4  Percentage  
distribution of Pb fractions 
in the sediments of Cochin 
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bioavailable fraction was found highest among all the 
sites in S5. More than 50% of Cu was bioavailable in 
all the locations (Fig. 5), with maximum of 84% at S4 
and minimum of 57% at S1.

Heavy metals in benthic organisms

Four species of edible arthropods, Metapenaeus dob-
soni, Metapenaeus monoceros, Penaeus indicus and 
Macrobrachium rosenbergii, were collected for the 
analysis of heavy metals. Zn was detected in all the 
species and the highest concentration was found in 
M. dobsoni, and the least was in P. indicus. Cd was 
detected from M. dobsoni, M. monoceros and M. 
rosenbergii, but the concentration was low. Pb was 
found only in M. dobsoni, at a higher concentration. 
Cu was found in high concentration at M. monoceros 
and P. indicus. The results are given in Table 3.

The biota concentration factor (BCF) for met-
als was calculated using the formula BCF = Cx/Cs 
(where, Cx is the mean concentration in organism, 
and Cs is the mean concentration in sediment as bio-
available fraction) (Table 4). The BCF values indicate 
the capacity to accumulate, regulate or eliminate the 
metal in the biota through metabolism (Morales-Hern 

et  al.,  2004). The highest BCF was observed in M. 
dobsoni (2.58) for Pb. Cu was present in two species, 
M. monoceros and P. indicus, and showed high BCF 
(1.63 and 1.13). Cd was present three species, except 
P. indicus, but showed low BCF and Zn present in all 
the species showed lowest BCF. However, the biota 
concentration factor of Pb in M. dobsoni is much 
higher than Cd in other species. Compared to the ear-
lier reports of Kaladharan et al. (2005), the concentra-
tion of Zn and Cd showed a significant increase in M. 
dobsoni in the study area.

The macrobenthic community assemblages and 
their potential use of ecological risk assessment have 
remained primarily unexplored expect a few attempts. 
Among the metals studied, only Cd and Pb have the 
regulations of the European Union for hazardous met-
als (Sivaperumal et al., 2007) and is 0.5 mg/kg (EC, 
2001)

Mobility and risk assessment of heavy metals

The mobility factor can be considered an index of 
mobility and bioavailability of metals in the soils (Lu 
et al., 2007), which was calculated as the ratio of water 
soluble, exchangeable and carbonate bound frac-
tions to the total of all fractions (Table  5), since the 

Fig. 5  Percentage  
distribution of Cu fractions 
in the sediments of Cochin 
estuary
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Table 3  Heavy metal accumulation in benthic organisms collected from Cochin estuary

Species Heavy metals Biometric parameters

Zn Cd Pb Cu Length (cm) Width (cm) Weight (g)

Metapenaeus dobsoni 62.179 4.732 69.695 ND 10 ± 2 2 ± 0.3 10 ± 2.5
Metapenaeus monoceros 53.096 2.349 ND 72.227 8 ± 0.5 1.4 ± 0.3 14 ± o.5
Penaeus indicus 24.78681 ND ND 45.554 10 ± 2 2 ± 0.3 10 ± 2.5
Macrobrachium rosenbergii 60.805 4.565 ND ND 19.000 6.000 60.000

 Page 7 of 14 220

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Environ Monit Assess (2021) 193: 220 

1 3

first three fractions are most bioavailable and mobile 
(Pueyo et al., 2003). The MF of heavy metals for each 
location was calculated, and the comparison of values 
did not show any location-specific variation, which 
indicates that similar ecological condition is prevailing 
throughout the study area. Mohan et al. (2012) found 
that Cd in Vembanad Lake is weakly bound with sedi-
ment and hence highly bioavailable than Pb and Cu. 
A similar condition was observed in the present study, 
but the mobility of Cu is slightly higher than Zn. Since 
the level of Zn in the sediments is extremely higher 
than other metals, the comparison of mobility is dif-
ficult. The metals distributed in different fractions 
have different behaviour in the environment, and thus, 
its remobilisation and bioaccumulation potential also 
vary (Fig. 6). As reported earlier, the bonding strength 
of metals with sediment is the major factor determin-
ing the reactivity; fractional distribution can be a risk 
assessment tool for the heavy metal contamination in 
the aquatic ecosystems (Jain et  al.,  2010). Based on 
this, the RAC was applied for the sediments of the 
study location (Aydin & Kucuksezgin, 2012).

The RAC indicates the sediment, which can 
release in the exchangeable and water-soluble frac-
tions. If the release of F1 fraction of the metal con-
cerned is < 1% of the total metal present in the 
sediment, then it will be considered safe for the envi-
ronment. On the contrary, if the sediment is releasing 
F1 fraction constituting more than 50% of the total 

metal, then such sediment has to be considered highly 
dangerous, and the metal released can easily enter 
the food chain. Various RACs based on the fractional 
distribution had been effectively utilised for ecologi-
cal risk assessment (ERA) of heavy metals in differ-
ent ecosystems. The RAC based on the percentage 
of bioavailable fractions can qualitatively express the 
risk as high, medium and low, which was successfully 
applied to various wetlands, such as Hussainsagar 
Lake, Hyderabad (Jain et al., 2010), the Sunderbans, 
West Bengal (Mukherjee et  al.,  2009), the Ganga 
River (Purushothaman & Chakrapani, 2007) and the 
Achankovil river basin, Kerala (Prasad et  al., 2006). 
Observations based on the above RAC show that 
only Cd at the S2 comes under very high-risk crite-
ria, while Zn and Cd at all the locations are under the 
high-risk category, indicating the increased potential 
of Cd to enter into the food chain and cause threats 
to biota in the Cochin estuary (Fig. 7). Pb in all loca-
tions and Cu in four locations (except S4 where it is 
under medium risk) were under the low-risk criteria.

It was reported earlier that industrial pollution is 
the major source of heavy metals in the study area, 
and seasonal variation in distribution of heavy metals 
is negligible (Menon et al., 2000; Selvam et al., 2012). 
In the present study, sediment-bound heavy metals 
showed several fold increases over the early values 
reported by Kaladharan et al. (2005) indicating con-
tinuing discharge of industrial effluents in the estuary. 
The analysis of heavy metal status and geochemistry 
(Balachandran et  al.,  2005) concludes that the level 
of heavy metals has not reached to an extreme, but 
the enrichment factors of Zn and Cd are high to be 
included in the category of impacted estuary com-
pared to other estuaries. Kaladharan et  al. (2011) 
reported that cadmium has reached critical levels, 
and lead has attained levels of caution in the Cochin 
estuary, while copper and lead have attained levels 
of caution in Cochin inshore waters. Later, Shylesh 
Chandran et al. (2019) reported high level of ecologi-
cal risk due to Cd deposits in the region. Significant 

Table 4  Biota 
concentration factor for 
heavy metal accumulation 
in benthic organisms

BCF BioFRac BCF BioFRac BCF BioFRac BCF BioFRac

Metapenaeus dobsoni 0.065 0.181 2.580
Metapenaeus monoceros 0.056 0.090 1.631
Penaeus indicus 0.026 1.132
Macrobrachium rosenbergii 0.064 0.175

Table 5  Contribution of F1 (%) to the sum of all fractions of 
heavy metals

Location % of F1 in the in all fractions

Zn Cd Pb Cu

S 1 44.05 52.84 2.21 0.46
S 2 35.88 48.30 1.37 2.56
S 3 47.06 43.86 2.32 0.99
S 4 41.70 33.52 5.72 11.76
S 5 44.16 38.78 2.06 9.49
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positive correlation between the fractions of Zn and 
Cd indicates a common source of origin and poten-
tial of mobility in similar environmental conditions 
(Table  6). Most of the fractions of Pb and Cu were 
negatively correlated with fractions of Zn and Cd. 
This may be attributed to the continuous discharge 
of Zn and Cd in the sediments and active conversion 
in the prevalent environmental conditions. The posi-
tive correlation of F1 and F4 of Cu, along with nega-
tive correlation between F1 and F4, indicates that the 
reducing environment in the lake sediment helps it to 
convert into more bioavailable fractions.

The partitioning of Zn is influenced by depth of 
water columns, reduction potential of sediments and 
cycling of hydroxides, sulphates, carbonates, etc. The  
prominent ecological condition, persisting along the 
lower reaches of Periyar River, will enhance the bio-
availability of Zn. Mobility and bioavailability of Cd  
remain highly influenced by the ionic species. Cd, in  
sediments of aquatic ecosystems, is present mainly 
in the exchangeable fraction, followed by the Fe–Mn  
oxides and then residual fractions (Bradl, 2004;  
Jain et al., 2010; Yao, 2008). Due to high affinity of 
Cd towards suspended organic matter, it may attain 

Table 6  Correlation between different fractions of heavy metals from Cochin estuary

Zn Cd Pb Cu

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

Zn F1 1
F2 .956* 1
F3 .937* .938* 1
F4 .401 .403 .310 1

Cd F1 1.00** .956* .937* .401 1
F2 .931* .942* .956* .111 .931* 1
F3 .544 .314 .555 .098 .544 .454 1
F4 .004 −.174 −.152 −.666 .004 .058 .293 1

Pb F1 −.035 −.237 −.126 .570 −.035 −.341 .505 −.142 1
F2 −.080 −.033 −.254 .796 −.079 −.361 −.406 −.533 .432 1
F3 .517 .510 .276 .826 .517 .232 −.052 −.279 .298 .787 1
F4 .289 .127 .101 .818 .289 −.074 .403 −.204 .876 .665 .716 1

Cu F1 −.530 −.713 −.449 −.410 −.530 −.522 .419 .352 .484 −.393 −.658 .026 1
F2 −.764 −.899* −.706 −.453 −.764 −.749 .118 .311 .398 −.242 −.651 −.054 .948* 1
F3 .530 .441 .643 .588 .530 .400 .728 −.441 .577 .019 .182 .541 .116 −.137 1
F4 .313 .510 .289 .714 .313 .221 −.468 −.757 −.140 .690 .703 .223 −.854 -.773 .122 1

Fig. 6  Variation in mobil-
ity of heavy metals in dif-
ferent sampling locations
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more mobility and be easily available to plants and 
other organisms (Ayodele et  al.,  2016). High distur-
bances in the water column owing to various natural 
and anthropogenic reasons affecting the organic car-
bon dynamics in the estuary have influential impact 
on the biogeochemistry of Cd. Pb is highly toxic in 
ecosystems, especially for aquatic plants and has no 
role in biological systems (Zulfiqar et al., 2019). The 
dominance of reducible fraction of Pb indicates the 
anthropogenic input, along with lithogenic and other 
natural sources. Due to high toxicity and carcino-
genicity, Pb requires special attention in the Cochin 
estuary, since it is highly bioavailable in the region. 
Copper was found less bioavailable to organisms 
compared to other metals because of the dominance 
of residual fraction. The bioavailability of copper was 
found to be increasing towards the lower stretches of 
the river. This may due to the single point discharge 
of copper from the industrial area located near the 
Periyar River. High concentration of reducible frac-
tion in all the locations shows its potential mobility 
and possible ecological risks. Sediment flux stud-
ies, based on the suspended sediment concentration 
(Vinita et  al.,  2017), shows that contaminants from 
the Cochin estuary can be easily transported to the 
coastal regions of the adjacent Arabian Sea, thus high 
potential to pollute the sediments. The particle resi-
dence time in Cochin estuary is 25 to 30 days, with 
a significant seasonal variation (John et  al.,  2020), 
which highlights that contamination of the Cochin 
estuary poses considerable ecological and human 
health risks along the coastal belt.

Monitoring and estimating ecological risk indices 
in an essential part of lake management, especially 
when the pollution continues and the prevailing eco-
logical conditions, enhance the mobility of pollutants. 
Under the stress of urbanisation, over exploitation, 
reclamation and land use/land cover changes in the 
catchment, contaminants from polluted matrices pose 
more ecological and human health risks (Lu et  al., 
2016; Han et al., 2019). The estimation of fractional 
distributions of heavy metals can be an effective risk 
assessment tool, since fractionation is influenced by 
environmental changes and physical stress in the eco-
system (Xiao et al., 2015; Zhang et al., 2017). As an 
important estuarine system in terms of ecological and 
economical aspects of the region, the Cochin estuary 
requires immediate management interventions for its 
sustainability. Various indices derived from the pre-
sent study can be effectively utilised for implement-
ing strict pollution control measures and biota con-
sumption regulations for the lake. Indices based on 
the bioaccumulation of heavy metals can be helpful to 
minimise the risk of consumption by the local com-
munity, thus ensuring better management of biore-
sources of the lake.

Conclusion

The study indicates that significant quantity of Zn, 
Cd, Pb and Cu is present in bio-available form, which 
poses a threat of bioaccumulation and associated eco-
logical risk in the Cochin estuary. More studies and 

Fig. 7  Ecological risk 
posed by heavy metals in 
Cochin estuary based on 
risk assessment code
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regular monitoring of Pb and Cd are required due to 
their high mobility and toxicity, despite their lower 
level of contamination compared to Zn. Even though 
the level of metals in the edible prawns remained 
within the limits of international standards, the spe-
cies show significant capacity for bioaccumulation of 
metals. Since industries located along the banks of 
the river are the major source of heavy metal pollu-
tion, regular monitoring and risk assessment are sug-
gested for the sustainability of the Cochin estuary.
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